20=x^2+(2x)^2

Simple and best practice solution for 20=x^2+(2x)^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20=x^2+(2x)^2 equation:



20=x^2+(2x)^2
We move all terms to the left:
20-(x^2+(2x)^2)=0
We get rid of parentheses
-x^2-2x^2+20=0
We add all the numbers together, and all the variables
-3x^2+20=0
a = -3; b = 0; c = +20;
Δ = b2-4ac
Δ = 02-4·(-3)·20
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{15}}{2*-3}=\frac{0-4\sqrt{15}}{-6} =-\frac{4\sqrt{15}}{-6} =-\frac{2\sqrt{15}}{-3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{15}}{2*-3}=\frac{0+4\sqrt{15}}{-6} =\frac{4\sqrt{15}}{-6} =\frac{2\sqrt{15}}{-3} $

See similar equations:

| 2x-x=1+x+x | | -22+30p=11p-22 | | 4w=280 | | X=1,5x | | 6m-7(-7m+4)=33-6m | | 3x^2-5x+6.25=16.25 | | g-31=7 | | -4p+27=-3p-2(3p+4) | | -b-2b-3b+4=68 | | 7-5/2x=23 | | -n/2+1=-8n+(7n+n) | | 3x/2x+3/x=1 | | 35+k=-2(4k-4) | | P=Fd/T | | y-(y-5)/2=2 | | -8a-22=-3(4a-2) | | 14+2(x-5)=3(2x+7)-5 | | 6x-25=180 | | 7x+5=5x-9= | | X-5+3y=0 | | 6x-36=180 | | 3(x-3)=2-(x+11) | | (1/2)(4/3)=z | | 2(3x+1)-4(x-7)=22 | | 5(4x-3)+4(4x+8)=11 | | 4a-2a-3/4=6 | | 4a-(2a-3)/4=6 | | 4/370z-1/2=0 | | -3(5-4k)=3k-30 | | 10-2|x-9|=-26 | | 3(x–2)-2=4x–2 | | -2=7(q+2)+3(2q-1 |

Equations solver categories